Lifting lug on 9.4T 210 OVC.

Total weight of magnet: M := 5000 kg

Four lugs - distrbution of load using chains can mean any one lug may be required to take half the total weight.

Load on each lifting lug:
$$P := \frac{M \cdot g}{2}$$
 $P = 24516.63 \text{ N}$

Material: - Stainless Steel 304

Ultimate tensile stress:
$$UTS := 485 \cdot 10^6 Pa$$
 Proof Stress: $R_{0.2} := 170 \cdot 10^6 Pa$

Allowable design stress for a safety factor of 4 on UTS:
$$\sigma_{max} := \frac{\text{UTS}}{4} \qquad \sigma_{max} = 121.25 \times 10^6 \, \text{Pa}$$

Plate geometry:

Plate thickness:
$$t := 12mm$$

Effective width of tensile loaded plane:
$$b := 35 \text{mm}$$

Effective area of tensile loaded plane:
$$A := 2 \cdot t \cdot b$$
 $A = 840 \text{ mm}^2$

Stress in vertical lift:
$$\sigma_{v} := \frac{P}{\Lambda}$$
 $\sigma_{v} = 29.19 \times 10^{6} Pa$

This is safely below allowable design stress

 $\underline{\text{Minimum weld area:}} \text{ Allowable shear stress in weld:} \quad AWS := 0.3 \cdot UTS \quad AWS = 1.455 \times 10^8 \, Pa$

Area of weld required:
$$A_{weld} := \frac{P}{AWS}$$
 $A_{weld} = 168.499 \text{ mm}^2$

Actual weld area:

Leg of base weld:
$$z_b := 5 mm$$
 (To OVC tube)

(To OVC tube) Throat of base weld:
$$a_b := \frac{\sqrt{2 \cdot z_b^2}}{2}$$
 $a_b = 3.54 \, \mathrm{mm}$

Length of base weld:
$$l_h := 73 \text{mm}$$

Area of base weld:
$$A_b := a_b \cdot l_b$$
 $A_b = 258.09 \text{ mm}^2$

$$\label{eq:continuous} \text{Leg of top welds:} \qquad \textbf{z}_t \coloneqq 4mm \qquad \text{(Ignoring chamfer)}$$

Throat of top welds:
$$a_t := \frac{\sqrt{2 \cdot z_t^2}}{2}$$
 $a_t = 2.83 \, mm$

Total length of
$$l_t := 75 \text{mm}$$
 top welds:

Area of top welds:
$$A_t := a_t \cdot l_t$$
 $A_t = 212.13 \text{ mm}^2$

Total area of welds:
$$A_{Total} := A_b + A_t$$
 $A_{Total} = 470.226 \text{ mm}^2$

Therefore exceeds minimum area required.

Limits of horizontal loading:

Distance from point of lift to top weld: $l_1 := 91 \text{mm}$

(Centre of area of top weld)

Distance from top weld to base weld: $l_2 := 38 \text{mm}$

(Centre of areas of welds)

Maximum horizontal load, limited by top weld:

 $\mbox{Maximum reaction at top weld:} \quad \mbox{$F_t := AWS$\cdot$A}_t \qquad \quad \mbox{$F_t = 30.865 \times 10^3$ N$}$

Maximum horizontal load, limited by plate bending:

Effective beam width: $b_e := 93 \text{mm}$

Moment of inertia: $I := b_e \cdot \frac{t^3}{12}$ $I = 1.339 \times 10^{-8} \text{ m}^4$

Stress limited by allowable stress:

 $\text{Maximum bending moment:} \quad \text{M}_{max} := \frac{\sigma_{max} \cdot 2 \cdot I}{t} \qquad \text{M}_{max} = 270.63 \, \text{N} \cdot \text{m}$

Maximum horizontal load: $P_h := \frac{M_{max}}{l_1}$ $P_h = 2973.956 \, N$

Maximum angle of chain: $\alpha := asin\left(\frac{P_h}{P}\right)$ $\alpha = 7 deg$

Stress limited by yielding:

Maximum bending moment: $M_{max} := \frac{R_{0.2} \cdot 2 \cdot I}{t}$ $M_{max} = 379.44 \text{ N} \cdot \text{m}$

 $\mbox{Maximum horizontal load:} \quad \mbox{P_h} := \frac{\mbox{M_{max}}}{\mbox{l_1}} \qquad \mbox{P_h} = 4169.67 \ \mbox{N}$

Maximum angle of chain: $\alpha := asin\left(\frac{P_h}{P}\right)$ $\alpha = 9.8 deg$

The lifting chains should be kept vertical when viewed from the side of the system, as they can only safely tolerate an angle of 7° from vertical.